INFORMATION LOSS MINIMIZATION FOR SPATIAL DATA REPRESENTATION
نویسندگان
چکیده
منابع مشابه
Clustering Categorical Data based on Information Loss Minimization
As the size of databases continues to grow, understanding their structure gets more difficult. This, together with the lack of documentation and the unavailability of the original designers of the database adds further difficulty to the job of researchers and professionals to understand the structure of large and complex databases. At the same time, data sources are distributed over several sit...
متن کاملMinimization of Information Loss through
In this article, we explore the concept of minimization of information loss (MIL) as a a target for neural network learning. We relate MIL to supervised and unsupervised learning procedures such as the Bayesian maximum a-posteriori (MAP) discriminator, minimization of distortion measures such as mean squared error (MSE) and cross-entropy (CE), and principal component analysis (PCA). To deal wit...
متن کاملEfficient Extraction and Representation of Spatial Information from Video Data
Vast amounts of video data are available on the web and are being generated daily using surveillance cameras or other sources. Being able to efficiently analyse and process this data is essential for a number of different applications. We want to be able to efficiently detect activities in these videos or be able to extract and store essential information contained in these videos for future us...
متن کاملSoftware Clustering based on Information Loss Minimization
The majority of the algorithms in the software clustering literature utilize structural information in order to decompose large software systems. Other approaches, such as using £le names or ownership information, have also demonstrated merit. However, there is no intuitive way to combine information obtained from these two different types of techniques. In this paper, we present an approach th...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Environmental Engineering (Transactions of AIJ)
سال: 2003
ISSN: 1348-0685,1881-817X
DOI: 10.3130/aije.68.71_3